Yishi Lin

  • Home

  • Archives

  • Dataset

  • Blog

  • Categories

  • Search

因果推断学习笔记:资料收集

Posted on 2018-11-04 Edited on 2019-05-23 In 因果推断 , 学习笔记

被几个causal inference的tutorial拉入了坑,觉得还蛮有意思的。 写一篇笔记收藏一些自己找到的的资料吧,持续更新中。

科普文章

  1. 统计之都上有一个因果推断系列,写得很好
    • 因果推断简介之一:从 Yule-Simpson’s Paradox 讲起
    • 因果推断简介之二:Rubin Causal Model (RCM) 和随机化试验
    • 因果推断简介之三:R. A. Fisher 和 J. Neyman 的分歧
    • 因果推断简介之四:观察性研究,可忽略性和倾向得分
    • 因果推断简介之五:因果图 (Causal Diagram)
    • 因果推断简介之六:工具变量(instrumental variable)
    • 因果推断简介之七:Lord’s Paradox
    • 因果推断简介之八:吸烟是否导致肺癌?Fisher versus Cornfield

教材

  1. Causality: Models, Reasoning and Inference. Judea Pearl. 偏重 causal diagram 一些。
  2. Causal Inference for Statistics, Social, and Biomedical. Sciences: An Introduction. Guido W. Imbens and. Donald B. Rubin. 个人感觉比较实用。
  3. Mostly harmless econometrics: An empiricist’s companion. Angrist, J. D., & Pischke, J. S.. 实用。作者对银河系漫游指南真的是真爱。
  4. Causal Inference: The Mixtape. Scott Cunningham. 可以在教授主页上下载到 PDF。内容 self-contained,很全。

公开课

带视频的公开课

  1. Four Lectures on Causality (Prof. Jonas Peters, University of Copenhagen @MIT)
    • 主页: https://stat.mit.edu/news/four-lectures-causality/
    • 偏理论一些,和Pearl一个流派
  2. A Crash Course in Causality: Inferring Causal Effects from Observational Data (Prof. Jason A. Roy, Ph.D., UPenn)
    • 主页: https://www.coursera.org/learn/crash-course-in-causality
    • 入门课程,通俗易懂,带有一部分R的tutorial和tests可以练手

只有PPT的公开课

  1. Applied Causality (Spring 2017, Columbia University, David M. Blei)
    • 课程主页:http://www.cs.columbia.edu/~blei/seminar/2017_applied_causality/index.html

Tutorial

  1. Tutorial on Causal Inference and Counterfactual Reasoning (KDD’18)
    • Presenter: Amit Sharma (@amt_shrma), Emre Kiciman (@emrek)
    • 主页:https://causalinference.gitlab.io/kdd-tutorial/
  2. Tutorial on Counterfactual Inference (NIPS’18)
    • Presenter: Susan Athey (Stanford)
    • 视频:https://www.facebook.com/nipsfoundation/videos/1291139774361116/UzpfSTEwMDAwMTk2OTU5ODE5NToxOTQwNTU1NTUyNjg2NzQ2/
    • Slides和其它资料: /https://drive.google.com/drive/folders/1SEEOMluxBcSAb_tsDYgcLFtOQaeWtkLp
  3. Machine Learning and Econometrics (2018 AEA Continuing Education Webcasts)
    • Presenter: Susan Athey, Guido Imbens
    • 视频:https://www.aeaweb.org/conference/cont-ed/2018-webcasts
    • Slides和其它资料: /https://drive.google.com/drive/folders/1SEEOMluxBcSAb_tsDYgcLFtOQaeWtkLp

TODO

  1. Statistical and causal inference in social networks (WWW2015 School)
    • https://www.cs.purdue.edu/waw2015/_media/eckles_-_waw_tutorial_-_for_web.pdf (TODO)

工业界应用收集

收集一些作者来自工业界的PPT。

  1. _Causality without headaches_ (Benoît Rostykus, Senior Machine Learning Researcher at Netflix) https://www.slideshare.net/BenoitRostykus/causality-without-headaches

R Packages

  1. MatchIt:各种matching方法。
  2. WeightIt:封装了各种weighting方法。
  3. grf (generalized random forests)
  4. bartCause

其它

  1. Github rguo12/awesome-causality-algorithms:paper和code列表
  2. Github rguo12/awesome-causality-data:数据集列表
  3. Causality paper @Totte Harinen:一位 Uber data scientist 的博客
# causality # 因果推断
Hexo Deployment with GitLab CD
因果推断论文阅读(一):Comparison of Approaches to Ad Mean (Facebook's paper)
  • Table of Contents
  • Overview
Yishi Lin

Yishi Lin

24 posts
11 categories
25 tags
RSS
GitHub E-Mail
  1. 1. 科普文章
  2. 2. 教材
  3. 3. 公开课
    1. 3.1. 带视频的公开课
    2. 3.2. 只有PPT的公开课
  4. 4. Tutorial
  5. 5. 工业界应用收集
  6. 6. R Packages
  7. 7. 其它
© 2013 – 2021 Yishi Lin
Powered by Hexo v3.9.0
|
Theme – NexT.Gemini v7.3.0