Analyzing Competitive Influence Maximization Problems with Partial Information

Yishi Lin, John C.S. Lui
The Chinese University of Hong Kong
Background: Word-of-Mouth

In social interactions, we influence each other.

Foodie @Sydney, Australia
Awesome strawberry watermelon cake with rose scented cream!!
Background: Viral Marketing

- **Assumption**: the *word-of-mouth* effect
- **Idea**: exploiting the *social influence* for marketing
- **Targeting** “influencers” who are likely to produce the word-of-mouth diffusion
Background: Classical *Independent Cascade* model

- **Single source *Independent Cascade* (IC) model** (Kempe et al. KDD’03)
 - Initially, a set of "seed nodes" S are activated.
 - Influenced node u influences its neighbor v with probability p_{uv}.
 - **Influence spread $\sigma(S)$**: the expected number of influenced nodes

Background: Classical *Influence Max. Problem*

Input: G and k

Problem (Influence Maximization)
Select k seed nodes so to maximize the expected spread of influence.

Output:
Seed set of size k

Under the IC model:
- The IM problem is NP hard. 😞
- Even computing $\sigma(S)$ is #P hard. 😞
Motivation

- Competition among products

- **Partial information**: It is not always possible to have full information about viral marketing strategies of the competitor.
Main Contributions

General Competitive Independent Cascade Model
- Many specific models proposed previously are its special cases
 - Distance-based model (Carnes et al. ICEC’2007)
 - Wave propagation model (Carnes et al. ICEC’2007)
 - Campaign-Oblivious Independent Cascade model (Budak et al. WWW’11)

General Competitive Influence Maximization Problem
- Assuming only partial knowledge about competitor’s seeding strategy

General algorithmic framework
- It solves the general problem.
- It works for any specific instances of the general model.
Model
General Competitive Independent Cascade Model

- **Network** $G = (V, E)$:
 - Every edge e_{uv} is associated with a probability p_{uv}.

- **Sources**: two competing sources A and B.

- **State of a node**: Susceptible, Inf$_A$ or Inf$_B$
 - “Influenced” cannot change its state.

- **Seeds / initial adopters**: $S_A \subseteq V, S_B \subseteq V$
 - We assume $S_A \cap S_B = \emptyset$.
Model
General Competitive Independent Cascade Model

- **Given seeds:** S_A and S_B
- **Determine propagation results**
 - Active edges E_a: edge e_{uv} is “active” w.p. p_{uv}.
 - Node u will be in the same state as that of *one of its nearest seeds* in $G = (V, E_a)$.
 - A specific model should specify how the influence propagates in detail.
- **The expected influence**
 - $\sigma(S_B \mid S_A) = \mathbb{E}_{E_a} \left[\# \text{ of nodes in state Inf}_B \right]$
- **Assumption**
 - monotonicity and submodularity of $\sigma(S_B \mid S_A)$

$S_A = \{3\} \quad S_B = \{5\}$
Problem Definition

Competitive Influence Maximization problem with Partial information (CIMP)

Input:
- G, k, propagation model
- Competitor’s seed distribution D_A

Problem
Select a set S_B^* of k nodes so that the expected spread of influence of source B under the presence of competitors, $\sigma(S_B^*|D_A)$, is maximized.

$$\sigma(S_B^*|D_A) = \mathbb{E}_{S_A \sim D_A} [\sigma(S_B^*|S_A)]$$

Output:
Seed set S_B of size k
Problem Definition

Competitive Influence Maximization problem with Partial information (CIMP)

The CIMP problem is **NP hard. 😞**
Even computing $\sigma(S_B|D_A)$ is **#P hard. 😞**

Solution

Two-phase Competitive Influence Maximization (TCIM)
TCIM: Estimating the Expected Influence

Random **Reverse Accessible Pointed Graph** (RAPG)

Input:
- Random root \(r \)
- Random seeds \(S_A \sim \mathcal{D}_A \)
- Random active subgraph \(g \)

Output: \(R = (V_R, E_R, S_{R,A}) \)
- \(V_R \): nodes that might influence \(r \) in \(g \)
- \(E_R \): all shortest paths from \(V_R \) to \(r \) in \(g \)
- \(S_{R,A} = S_A \cap V_R \): seeds of source \(A \) in \(R \).

\[
g = G\{e_1, e_6, e_7\}, \quad S_A = \{4,9\}
\]

\[
R = (V_R, E_R, S_{R,A})
\]
TCIM: Estimating the Expected Influence

- **Reverse Accessible Pointed Graph** R
- Seed set S_B
- Specific competitive propagation model

"Score" of S_B in R:
$\Pr[S_B \text{ influences the root of } R]$

Distance-based Model
"Score" of S_B in R: $1/2$

$S_A = \{9\}$
$S_B = \{11\}$

(Lemma 1) $n \cdot \mathbb{E}_R[\text{Score}_R(S_B)] = \sigma(S_B|\mathcal{D}_A)$

$\mathbb{E}[\text{"Score" of } S_B \text{ in a random } R]$
$= \Pr[S_B \text{ influences a random node in } G]$
TCIM: High Level Ideas

(Lemma 1) $n \cdot \mathbb{E}_R[\text{Score}_R(S_B)] = \sigma(S_B|\mathcal{D}_A)$

Chernoff-Hoeffding Bound

Estimating Influence

- Given \mathcal{D}_A and a sufficiently large number of random RAPG instances,
 $n \cdot \text{ave}[\text{score}_R(S_B)] \approx \sigma(S_B|\mathcal{D}_A)$.

Node Selection Monotone & Submodular

- We know how to estimate $\sigma(S_B|\mathcal{D}_A)$
- We greedily add nodes to S_B with the goal of maximizing $\sigma(S_B|\mathcal{D}_A)$

Phase 1: Parameter estimation

Estimate and refine the number of RAPG instances we need.

Phase 2: Node Selection

1. Generate enough RAPGs
2. Selects seeds for source B
TCIM: Main Results

(Theorem 4) Two-phase Competitive Influence Maximization

Practical performance guarantee
- \(\sigma(S_B|\mathcal{D}_A) \geq (1 - 1/e - \epsilon) \cdot \sigma(S_{B}^{OPT}|\mathcal{D}_A) \), with probability at least \(1 - n^{-\ell} \)
- the best approximate ratio one could obtain in polynomial time

Practical efficiency
- \(O((c(\ell + k)(m + n) \log n)/\epsilon^2) \)
- the value of \(c \) is related to the specific GCIC model
Application: A Special Case of the GCIC model

Distance-based Model (Carnes et al. ICEC’2007)

- Given S_A, S_B and a set of active edges E_a.
- Probability that source B influences node u:

$$\frac{\text{# of } u\text{'s nearest seeds of source } B}{\text{# of } u\text{'s nearest seeds of both sources}}$$

- TCIM Complexity: $O\left(\frac{k(\ell + k)(m + n) \log n}{\epsilon^2}\right)$

$$c = O(k)$$

$S_A = \{3\}, S_B = \{4,5\}$
Experiments

Comparison among the TCIM framework and previous methods

- **Dataset**: a *Facebook-like social networks* (1,899 nodes and 20,296 directed edges)

- **Baselines**:
 - CELF (Leskovec et al. ICDM’07): a greedy method
 - CELF++ (Goyal et al. WWW’11): a greedy method
 - DegreeDiscount (Chen et al. KDD’09): a heuristic method

- **Settings**:
 - For each edge $e_{uv} \in E$, we set $p_{uv} = 1/d_v$ (IC-Weighted Cascade model).
 - We select 50 nodes using single source influence maximization method for source A.

Comparison among the TCIM framework and previously methods

The influence spread of S_B returned by TCIM, CELF and CELF++ are comparable.

Up to 4 orders of magnitude speedup
Experimental Results

Results on larger datasets

- The NetHEPT collaboration network (15,233 nodes and 58,891 undirected edges)
- The Epinion social network (508,837 directed relationships among 75,879 users)

Remarks:

1. When $\epsilon = 0.5$, TCIM finishes within 7 seconds for the NetHEPT dataset and finishes within 23 seconds for the Epinion dataset.
2. If we do not require a very tight approximation ratio, we could choose a larger ϵ.

Figure 7: Results on large datasets: Running time versus ϵ under three propagation models. ($|S_A| = 50, k = 50, \ell = 1$)
Experimental Results

Results on larger datasets

- The NetHEPT collaboration network (15,233 nodes and 58,891 undirected edges)
- The Epinion social network (508,837 directed relationships among 75,879 users)

Remarks:
1. With the increase of k, the running time of TCIM tends to drop first, because the number of RAPG instances needed decreases.
2. TCIM is especially efficient for large k.

Figure 6: Results on large datasets: Running time versus k under three propagation models. ($|S_A| = 50$, $\epsilon = 0.1$, $\ell = 1$)
Experiments: TCIM with partial information

Competitor’s strategy	influence given explicit S_A selected by different methods ($	S_A	= 50$)						
	COICM	Wave propagation model							
	greedy	degree	centrality	average	greedy	degree	centrality	average	
dataset									
NetHEPT	mixed method	599.82	632.23	657.49	**629.85**	586.58	624.41	650.39	**620.46**
	greedy	658.38	515.72	519.50	**564.53**	644.53	525.70	515.37	**561.87**
	degree	400.18	702.93	622.15	**575.09**	372.58	693.95	613.98	**560.17**
	centrality	233.14	478.74	763.43	**491.77**	201.72	462.66	752.97	**472.45**
Epinion	mixed method	2781.71	4603.63	10683.26	**6022.87**	2773.17	4494.80	10517.00	**5928.32**
	greedy	4440.93	3958.87	6372.13	**4923.98**	4265.87	3813.06	6377.30	**4818.74**
	degree	3130.99	5473.33	7283.28	**5295.87**	2983.56	5299.18	7258.24	**5180.33**
	centrality	224.93	2809.74	12078.70	**5037.79**	204.01	2721.87	12075.78	**5000.55**

Table 1: Expected influence of seeds S_B returned by the TCIM framework given the “mixed method distribution” (mixed method) as seed distribution for source A or given the guess of explicit seeds of A. Seeds “greedy” for source A is the set of nodes selected by single source influence maximization algorithm. The set “degree” for source A (resp. “centrality”) denotes the top 50 nodes ranked by (out)degree (resp. closeness centrality). ($k = 50, \epsilon = 0.1, \ell = 1$)
Conclusion

➢ General problem formulation
 ◦ General Competitive Independent Cascade (GCIC) model
 ◦ Competitive Influence Maximization problem with Partial information (CIMP)

➢ General Two-phase Competitive Influence Maximization (TCIM) framework
 ◦ It solves the CIMP problem under the GCIC model.
 ◦ With probability at least $1 - n^{-\ell}$, it guarantees a $(1 - 1/e - \epsilon)$-approximate solution.
 ◦ It runs in $O((c(\ell + k)(n + m) \log n)/\epsilon^2)$ expected time, where c depends on the specific propagation model.

➢ We conduct extensive experiments using real datasets. For example,
 ◦ When S_A is given explicitly, we achieve up to four orders of magnitude speedup as compared to previous algorithms with the same quality guarantee.
Thank you!