
Boosting Information Spread:
An Algorithmic Approach

Yishi Lin (The Chinese University of Hong Kong)
Wei Chen (Microsoft Research)
John C.S. Lui (The Chinese University of Hong Kong)



Background: Viral Marketing
➢Assumption: the word-of-mouth effect
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Whom to give free samples 
to maximize the purchase of 
the product ?

Influence Maximization
Select 𝑘 seed nodes so to 
maximize the expected 
spread of influence.



Motivation

Some marketing strategies boost customers so that they are 
◦ More likely to be influenced by friends, or 

◦ More likely to influence their friends

Examples
◦ Customer incentive programs

◦ Social media advertising

◦ Referral marketing
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Motivation: Complement the Classical IM

Boosting a user vs. Turning a user into an initial adopter
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(e.g., coupon) (e.g., free products)

Our study: How to select users to “boost”?

IM studies: How to identify influential initial adopters?

Companies have more flexibility in determining where 
to allocate their marketing budgets



Main Contributions

Influence boosting model
◦the idea of boosting + the Independent Cascade model 

𝒌-boosting problem
◦ NP-hard

◦ Non-submodular objective function

Approximation algorithms
◦PRR-Boost / PRR-Boost-LB

◦ Approximation guarantee

◦ Practical efficiency
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Influence Boosting Model

Social network 𝐺 = (𝑉, 𝐸)
◦ Seed users: 𝑺 ⊆ 𝑽

◦ Boosted users: 𝑩 ⊆ 𝑽

Influence propagation
◦ Each “newly-influenced” node 𝑢 attempts to influence its neighbor 𝑣

◦ If 𝑣 is boosted (𝑣 ∈ 𝐵), 𝑢 succeeds w.p. 𝑝′𝑢𝑣 ≥ 𝑝𝑢𝑣

◦ Otherwise, 𝑢 succeeds w.p. 𝑝𝑢𝑣

Notations
◦ 𝜎𝑆(𝐵): boosted influence spread (expected influence spread)

◦ Δ𝑆 𝐵 = 𝜎𝑆 𝐵 − 𝜎𝑆(∅): boost of influence spread of 𝐵
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𝑝𝑢𝑣 = 0.1
𝑝𝑢𝑣

′ = 0.2

𝑆 = 𝑢

𝐵 = 𝑣

𝜎𝑆 𝐵 = 1.2

Δ𝑆 𝐵 = 0.1

𝑢

𝑣



𝑘-Boosting Problem

Problem 
◦ Given graph 𝐺, budget 𝑘, seeds 𝑆

◦ Select a set 𝐵 of 𝑘 nodes so that the boost of 
influence spread of is maximized.
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The 𝑘-boosting problem is NP hard. 
Computing Δ𝑆(𝐵) is #P hard. 

The boost of influence Δ𝑆(𝐵) is neither 
submodular nor supermodular!





𝑝𝑢𝑣 = 0.1
𝑝𝑢𝑣

′ = 0.2

𝑆 = 𝑢 , 𝑘 = 1

𝐵 =?

𝑢

𝑣



Our Solution: PRR-Boost/PRR-Boost-LB

Potentially Reverse Reachable Graphs (PRR-graphs)
◦ Estimate the boost of influence spread and its lower bound (for SA)

Sandwich Approximation (SA) strategy [1]

◦ Provides approximation guarantee

◦ Deals with the non-submodularity of objective function

State-of-the-art IM techniques [2][3]

◦ Sample PRR-graphs
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[1] W. Lu, W. Chen, and L. V. S. Lakshmanan, “From competition to complementarity: Comparative influence diffusion and maximization,” 
VLDB Endow., vol. 9, no. 2, 2015.
[2] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization in near-linear time: A martingale approach,” in SIGMOD, 2015. 
[3] H. T. Nguyen, T. N. Dinh, and M. T. Thai, “Stop-and-stare: Optimal sampling algorithms for viral marketing in billion-scale networks,” in 
SIGMOD, 2016. 



PRR-Boost: Estimating the boost of influence

Question
How to estimate the boost of influence (the objective function)?
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Potentially Reverse Reachable Graph (PRR-Graph)
◦ Random target node 𝑟

◦ Random “edge status”

◦ Seed nodes

◦ Non-blocked paths from seeds to 𝑟
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PRR-Boost: Estimating the boost of influence

A sampled influence 
propagation process 
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Boost of 𝑩 = 𝒏 ⋅ 𝔼𝑹[𝒇𝑹(𝑩)]

𝔼[“Score” of 𝑩 in a random 𝑅] =
Pr[a random node is inactive w/o 
boosting and active upon boosting 𝐵]

“Score” of 𝐵: 𝑓𝑅 𝐵 =
𝕀(influence 0 → 1)

PRR-Boost: Estimating the boost of influence

Boost of 𝑩 ≈ 𝒏 ⋅
σ𝑹 𝒇𝑹 𝑩

|𝑹 𝐬𝐚𝐦𝐩𝐥𝐞𝐬|



PRR-Boost (𝑮, 𝑺, 𝒌, 𝝐, ℓ)

1. ℓ′ ← ℓ ⋅ 1 + 𝑙𝑜𝑔 3 / 𝑙𝑜𝑔 𝑛
2. ℛ ← SamplingLB 𝐺, 𝑆, 𝑘, 𝜖, ℓ′ // sampling PRR-graphs

3. 𝐵𝜇 ← NodeSelectionLB ℛ, 𝑘 // maximize the lower bound of boost

4. 𝐵𝛥 ← NodeSelection ℛ, 𝑘 // maximize the boost of influence
5. 𝐵𝑠𝑎 ← argmax𝐵∈ 𝐵𝛥,𝐵𝜇

Estimation of 𝛥𝑆 𝐵 // 

6. Return 𝐵𝑠𝑎

PRR-Boost-LB returns 𝑩𝝁

PRR-Boost/PRR-Boost-LB: Algorithm Design
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Experiments: Settings
Datasets
◦ Real social networks & learned influence probabilities [4]

◦ Boosted influence probability: 𝑝𝑢𝑣
′ = 1 − 1 − 𝑝𝑢𝑣

𝛽, 𝛽 = 2
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[4] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Learning influence probabilities in social networks,” in WSDM, 2010. 



Experiments: Settings
• Datasets
• Real social networks & learned influence probabilities [4]

• Boosted influence: 𝑝𝑢𝑣
′ = 1 − 1 − 𝑝𝑢𝑣

𝛽, 𝛽 = 2

• Settings
• Parallelization with OpenMP and executed using 8 threads

• A Linux machine with an Intel Xeon E5620@2.4GHz CPU and 30GB 
memory 
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Quality of Solution (50 influential seeds)
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(a) Flixster
𝑛 = 96𝐾, 𝑚 = 485𝐾

ҧ𝑝 = 0.228, 𝜎 𝑆 = 20.4𝐾

(b) Flickr
𝑛 = 1.45𝑀, 𝑚 = 2.15𝑀
ҧ𝑝 = 0.013, 𝜎 𝑆 = 2,3𝐾

PRR-Boost
• Best quality
PRR-Boost-LB
• Slightly lower but 

comparable quality
Both of them
• significantly outperform 

other baselines



Running Time (50 influential seeds)we do not compare the running time of our algorithms with
heuristic methods to avoid cluttering the results.

k=100 k=1000 k=5000

0.1

1

10

100

1000

Digg Flixster Twitter Flickr

R
u

n
n

in
g

 t
im

e 
(s

)

(a) PRR-Boost

2
.2

x

2
.1

x 2
.0

x

3
.6

x

3
.7

x 3
.2

x

1
.9

x

1
.9

x 1
.9

x

1
.7

x

1
.8

x 1
.8

x

0.1

1

10

100

1000

Digg Flixster Twitter Flickr

R
u

n
n

in
g

 t
im

e 
(s

)

(b) PRR-Boost-LB

Fig. 5: Running time (influential seeds).

Effectiveness of the compression phase. Table 2 shows the
“compression ratio” of PRR-graphs and memory usages of
PRR-Boost and PRR-Boost-LB, demonstrating the impor-
tance of compressing PRR-graphs. The compression ratio is
the ratio between the average number of uncompressed edges
and average number of edges after compression in boostable
PRR-graphs. Besides the total memory usage, we also show
in parenthesis the memory usage for storing boostable PRR-
graphs, which is measured as the additional memory usage
starting from the generation of the first PRR-graph. For ex-
ample, for the Digg dataset and k = 100, for boostable PRR-
graphs, the average number of uncompressed edges is 1810.32,
the average number of compressed edges is 2.41, and the
compression ratio is 751.59. Moreover, the total memory usage
of PRR-Boost is 0.07GB with around 0.01GB being used to
storing “boostable” PRR-graphs. The compression ratio is high
for two reasons. First, in practice, many nodes visited in the
first phasecannot bereached by seed nodes. Second, among the
remaining nodes, many of them can be merged into the super-
seed node, and most non-super-seed nodes will be removed be-
cause they are not on any paths to the root node without going
through the super-seed node. The high compression ratio and
the memory used for storing compressed PRR-graphs show
that the compression phase is an indispensable constituent of
the generation of random PRR-graphs. For PRR-Boost-LB,
the memory usage is much lower compared with PRR-Boost,
because we only store “critical nodes” of boostable PRR-
graphs. In our experiments with β = 2, on average, each
boostable PRR-graph only has a few critical nodes, which
explains the low memory usage of PRR-Boost-LB. If one is
indifferent about the slightly difference between the quality
of solutions returned by PRR-Boost-LB and PRR-Boost, we
suggest to use PRR-Boost-LB because of its lower running
time and lower memory usage.

Approximation factors in the Sandwich Approxima-
tion. Recall that the approximate ratio of PRR-Boost and

PRR-Boost-LB depends on the ratio
µ (B ⇤)

∆ S (B ⇤)
. The closer to

one the ratio is, the better the approximation guarantee is. With
B ⇤ being unknown due to the NP-hardness of the problem,
we show the ratio when the boost is relatively large. To obtain
different boost sets with relatively large boosts, we generate
300 sets of k boosted nodes. The sets are constructed by
replacing a random number of nodes in Bsa by other non-
seed nodes, where Bsa is the solution returned by PRR-Boost.
For a given B , we use PRR-graphs generated for finding Bsa

Table 2: Memory usage and compression ratio (influential
seeds). Numbers in parentheses are additional memory
usage for boostable PRR-graphs.

k Dataset
PRR-Boost PRR-Boost-LB

Compression Ratio Memory (GB) Memory (GB)

100

Digg 1810.32 / 2.41 = 751.79 0.07 (0.01) 0.06 (0.00)
Flixster 3254.91 / 3.67 = 886.90 0.23 (0.05) 0.19 (0.01)
Twitter 14343.31 / 4.62 = 3104.61 0.74 (0.07) 0.69 (0.02)
Flickr 189.61 / 6.86 = 27.66 0.54 (0.07) 0.48 (0.01)

5000

Digg 1821.21 / 2.41 = 755.06 0.09 (0.03) 0.07 (0.01)
Flixster 3255.42 / 3.67 = 886.07 0.32 (0.14) 0.21 (0.03)
Twitter 14420.47 / 4.61 = 3125.37 0.89 (0.22) 0.73 (0.06)
Flickr 189.08 / 6.84 = 27.64 0.65 (0.18) 0.50 (0.03)

Digg Flixster Twitter Flickr
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Fig. 6: Sandwich Approximation:
µ (B )

∆ S (B )
(influential seeds).

to estimate
µ (B )

∆ S (B )
. Figure 6 shows the ratios for generated

sets B as a function of ∆ S (B ) for k 2 { 100, 1000, 5000} .
Because we intend to show the ratio when the boost of
influence is large, we do not show points corresponding to
sets whose boost of influence is less than 50% of ∆ S (Bsa ).
For all four datasets, the ratio is above 0.94, 0.83 and 0.74
for k = 100, 1000, 5000, respectively. For every dataset, we
observe that the ratio is closer to one when k is smaller, and
we now explain this. In practice, most boostable PRR-graphs
have “critical nodes”. When k is small, say 100, to utilize the
limited budget k efficiently, PRR-Boost and PRR-Boost-LB

tend to return node sets B so that every node in B is a critical
node in many boostable PRR-graphs. For example, for Twitter ,
when k = 100, among PRR-graphs that havecritical nodes and
are activated upon boosting Bsa , above 98% of them have
their critical nodes boosted (i.e., in Bsa). Meanwhile, many
root node r of PRR-graphs without critical nodes may stay
inactive. For a given PRR-graph R, if B contains critical nodes
of R or if the root node of R stays inactive upon boosting B ,
f −

R (B ) does not underestimate f R (B ). Therefore, when k is

smaller, the ratio of
µ (B )

∆ S (B )
=

E[f −
R (B ) ]

E[f R (B ) ]
tends to be closer to

one. When k increases, we can boost more nodes, and root
nodes of PRR-graphs without critical nodes may be activated,
thus the approximation ratio tends to decrease. For example,
for Twitter , when k increases from 100 to 5000, among PRR-
graphs whose root nodes are activated upon boosting Bsa , the
fraction of them having critical nodes decreases from around
98% to 88%. Accordingly, the ratio of µ(Bsa)/ ∆ S (Bsa )
decreased by around 9% when k increases from 100 to 5000.

Effects of the boosted influence probabilities. In our experi-
ments, we use the boosting parameter β to control the boosted
influence probabilities on edges. The larger β is, the larger the
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Time increases with 𝒌
• # of PRR-graphs ↑
PRR-Boost
• Efficient
PRR-Boost-LB
• Faster
• Effective & Efficient



More Experiments: Budget Allocation
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Steps
1. Select seeds
2. Select boost users
Take away messages
1. Our study complements 

the IM studies.
2. Budget allocation 

problem!

Setting: We assume that we can target 100 users as seed nodes with all the budget.



Conclusion
The 𝒌-boosting problem
◦ Influence boosting model
◦ NP-hard & non-submodular objective function

Approximation Algorithm
◦ PRR-Boost/PRR-Boost-LB = PRR-graphs + other techniques

◦ Approximation ratio: 𝟏 − 𝟏/𝒆 − 𝝐 ⋅
𝝁 𝑩𝑶𝑷𝑻

𝚫𝑺 𝑩𝑶𝑷𝑻

◦ Practical efficiency:

◦ PRR-Boost: 𝑂
𝐸𝑃𝑇

𝑂𝑃𝑇𝜇
⋅ 𝑘 ⋅ 𝑘 + ℓ ⋅ 𝑛 + 𝑚 log 𝑛 ⋅ 𝜖−2

◦ PRR-Boos-LB: 𝑂
𝐸𝑃𝑇

𝑂𝑃𝑇𝜇
⋅ 𝑘 + ℓ ⋅ 𝑛 + 𝑚 log 𝑛 ⋅ 𝜖−2

4/27/2017 INFLUENCE MAXIMIZATION PROBLEMS 19
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Thank you!



Motivation
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Potentially Reverse Reachable Graphs: Definition

4/27/2017 INFLUENCE MAXIMIZATION PROBLEMS 22



Potentially Reverse Reachable Graphs: Generation
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PRR-Boost: Sandwich Approximation

Goal: to tackle the non-submodularity of Δ𝑆 ⋅

Sandwich Approximation (SA) strategy

4/27/2017 INFLUENCE MAXIMIZATION PROBLEMS 24

Submodular UB: 𝜇 𝐵
Δ𝑆 𝐵

Submodular LB: 𝜈 𝐵

◦ Theoretical guarantee:

Δ𝑆 𝐵𝑠𝑎 ≥ max
Δ𝑆 𝐵𝜈

𝜈 𝐵𝜈
,

𝜇 𝐵𝑂𝑃𝑇

Δ𝑆 𝐵𝑂𝑃𝑇
⋅ 1 −

1

𝑒
− 𝜖 ⋅ 𝑂𝑃𝑇

Remarks
◦ Proposed by Lu, Wei et al. in “From competition to complementarity: comparative influence 

diffusion and maximization.” (VLDB’15)

𝐵𝜇

𝐵Δ

𝐵𝜈

greedy 𝐵𝑠𝑎 =
argmax𝐵∈{𝐵Δ,𝐵𝜇,𝐵𝜈}Δ𝑆(𝐵)



PRR-Boost: Main Results
PRR-Boost:

Practical performance guarantee

◦ Δ𝑆 𝐵𝑠𝑎 ≥ 1 −
1

𝑒
− 𝜖 ⋅

𝜇 𝐵𝑂𝑃𝑇

Δ𝑆 𝐵𝑂𝑃𝑇 ⋅ 𝑂𝑃𝑇, w.p. at least 1 − n−ℓ

◦ The approximate ratio is good if the lower bound is tight

◦ Experiments show that the lower bound is tight

Practical efficiency

◦ 𝑂
𝐸𝑃𝑇

𝑂𝑃𝑇𝜇
⋅ 𝑘 ⋅ 𝑘 + ℓ ⋅ 𝑛 + 𝑚 log 𝑛 ⋅ 𝜖−2

◦ 𝐸𝑃𝑇: the expected time to construct a PRR-graph

◦ 𝑂𝑃𝑇𝜇: the optimum solution for maximizing 𝜇

25

PRR-Boost-LB: same bound, much faster



Experiments: Compression Ratio
we do not compare the running time of our algorithms with
heuristic methods to avoid cluttering the results.
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Fig. 5: Running time (influential seeds).

Effectiveness of the compression phase. Table 2 shows the
“compression ratio” of PRR-graphs and memory usages of
PRR-Boost and PRR-Boost-LB, demonstrating the impor-
tance of compressing PRR-graphs. The compression ratio is
the ratio between the average number of uncompressed edges
and average number of edges after compression in boostable
PRR-graphs. Besides the total memory usage, we also show
in parenthesis the memory usage for storing boostable PRR-
graphs, which is measured as the additional memory usage
starting from the generation of the first PRR-graph. For ex-
ample, for the Digg dataset and k = 100, for boostable PRR-
graphs, the average number of uncompressed edges is 1810.32,
the average number of compressed edges is 2.41, and the
compression ratio is 751.59. Moreover, the total memory usage
of PRR-Boost is 0.07GB with around 0.01GB being used to
storing “boostable” PRR-graphs. The compression ratio is high
for two reasons. First, in practice, many nodes visited in the
first phasecannot bereached by seed nodes. Second, among the
remaining nodes, many of them can be merged into the super-
seed node, and most non-super-seed nodes will be removed be-
cause they are not on any paths to the root node without going
through the super-seed node. The high compression ratio and
the memory used for storing compressed PRR-graphs show
that the compression phase is an indispensable constituent of
the generation of random PRR-graphs. For PRR-Boost-LB,
the memory usage is much lower compared with PRR-Boost,
because we only store “critical nodes” of boostable PRR-
graphs. In our experiments with β = 2, on average, each
boostable PRR-graph only has a few critical nodes, which
explains the low memory usage of PRR-Boost-LB. If one is
indifferent about the slightly difference between the quality
of solutions returned by PRR-Boost-LB and PRR-Boost, we
suggest to use PRR-Boost-LB because of its lower running
time and lower memory usage.

Approximation factors in the Sandwich Approxima-
tion. Recall that the approximate ratio of PRR-Boost and

PRR-Boost-LB depends on the ratio
µ (B ⇤)

∆ S (B ⇤)
. The closer to

one the ratio is, the better the approximation guarantee is. With
B ⇤ being unknown due to the NP-hardness of the problem,
we show the ratio when the boost is relatively large. To obtain
different boost sets with relatively large boosts, we generate
300 sets of k boosted nodes. The sets are constructed by
replacing a random number of nodes in Bsa by other non-
seed nodes, where Bsa is the solution returned by PRR-Boost.
For a given B , we use PRR-graphs generated for finding Bsa

Table 2: Memory usage and compression ratio (influential
seeds). Numbers in parentheses are additional memory
usage for boostable PRR-graphs.

k Dataset
PRR-Boost PRR-Boost-LB

Compression Ratio Memory (GB) Memory (GB)

100

Digg 1810.32 / 2.41 = 751.79 0.07 (0.01) 0.06 (0.00)
Flixster 3254.91 / 3.67 = 886.90 0.23 (0.05) 0.19 (0.01)
Twitter 14343.31 / 4.62 = 3104.61 0.74 (0.07) 0.69 (0.02)
Flickr 189.61 / 6.86 = 27.66 0.54 (0.07) 0.48 (0.01)

5000

Digg 1821.21 / 2.41 = 755.06 0.09 (0.03) 0.07 (0.01)
Flixster 3255.42 / 3.67 = 886.07 0.32 (0.14) 0.21 (0.03)
Twitter 14420.47 / 4.61 = 3125.37 0.89 (0.22) 0.73 (0.06)
Flickr 189.08 / 6.84 = 27.64 0.65 (0.18) 0.50 (0.03)

Digg Flixster Twitter Flickr
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Fig. 6: Sandwich Approximation:
µ (B )

∆ S (B )
(influential seeds).

to estimate
µ (B )

∆ S (B )
. Figure 6 shows the ratios for generated

sets B as a function of ∆ S (B ) for k 2 { 100, 1000, 5000} .
Because we intend to show the ratio when the boost of
influence is large, we do not show points corresponding to
sets whose boost of influence is less than 50% of ∆ S (Bsa ).
For all four datasets, the ratio is above 0.94, 0.83 and 0.74
for k = 100, 1000, 5000, respectively. For every dataset, we
observe that the ratio is closer to one when k is smaller, and
we now explain this. In practice, most boostable PRR-graphs
have “critical nodes”. When k is small, say 100, to utilize the
limited budget k efficiently, PRR-Boost and PRR-Boost-LB

tend to return node sets B so that every node in B is a critical
node in many boostable PRR-graphs. For example, for Twitter ,
when k = 100, among PRR-graphs that have critical nodes and
are activated upon boosting Bsa , above 98% of them have
their critical nodes boosted (i.e., in Bsa ). Meanwhile, many
root node r of PRR-graphs without critical nodes may stay
inactive. For a given PRR-graph R, if B contains critical nodes
of R or if the root node of R stays inactive upon boosting B ,
f −

R (B ) does not underestimate f R (B ). Therefore, when k is

smaller, the ratio of
µ (B )

∆ S (B )
=

E[f −
R

(B ) ]

E[f R (B ) ]
tends to be closer to

one. When k increases, we can boost more nodes, and root
nodes of PRR-graphs without critical nodes may be activated,
thus the approximation ratio tends to decrease. For example,
for Twitter , when k increases from 100 to 5000, among PRR-
graphs whose root nodes are activated upon boosting Bsa , the
fraction of them having critical nodes decreases from around
98% to 88%. Accordingly, the ratio of µ(Bsa)/ ∆ S (Bsa)
decreased by around 9% when k increases from 100 to 5000.

Effects of the boosted influence probabilities. In our experi-
ments, we use the boosting parameter β to control the boosted
influence probabilities on edges. The larger β is, the larger the
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Experiments: Effects of the Boosting Parameter
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Fig. 7: Effects of the boosting parameter (influential seeds,
k = 1000).
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Fig. 8: Sandwich Approximation with varying boosting

parameter :
µ (B )

∆ S (B )
(influential seeds, k = 1000).

boosted influence probabilities on edges are. Figure 7 shows
the effects of β on the boost of influence and the running time,
when k = 1000. For other values of k, the results are similar.
In Figure 7a, the optimal boost increases when β increases.
When β increases, for Flixster and Flickr, PRR-Boost-LB
returns solution with quality comparable to those returned
by PRR-Boost. For Twitter , we consider the slightly de-
generated performance of PRR-Boost-LB acceptable because
PRR-Boost-LB runs significantly faster. Figure 7b shows
the running time for PRR-Boost and PRR-Boost-LB. When
β increases, the running time of PRR-Boost increases ac-
cordingly, but the running time of PRR-Boost-LB remains
almost unchanged. Therefore, compared with PRR-Boost,
PRR-Boost-LB is more scalable to larger boosted influence
probabilities on edges. In fact, when β increases, a random
PRR-graph tends to include more nodes and edges. The run-
ning time of PRR-Boost increases mainly because the cost for
PRR-graph generation increases. However, when β increases,
we observe that the cost for obtaining “critical nodes” for a
random PRR-graph does not change much, thus the running
time of PRR-Boost-LB remains almost unchanged. Figure 8
shows the approximation ratio of the sandwich approximation
strategy with varying boosting parameters. Weobserve that, for
every dataset, when we increase the boosting parameter, the

ratio of
µ (B )

∆ S (B )
for large∆ S (B ) remains almost the same. This

suggests that both our proposed algorithms remain effective
when we increase the boosted influence probabilities on edges.

B. Random seeds

In this part, we select five sets of 500 random nodes as
seeds for each dataset. The setting here maps to the real
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Fig. 9: Boost of the influence versus k (random seeds).
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Fig. 10: Running time (random seeds).

situation where some users become seeds spontaneously. All
experiments are conducted on five sets of random seeds, and
we report the average results.

Quality of solution. We select up to 5000 nodes and compare
our algorithms with baselines. From Figure 9, we can draw
conclusions similar to those drawn from Figure 4 where the
seeds are highly influential users. Both PRR-Boost and
PRR-Boost-LB outperform all baselines.

Running time. Figure 10 shows the running time of
PRR-Boost and PRR-Boost-LB, and the speedup of
PRR-Boost-LB compared with PRR-Boost. Figure 10b shows
that PRR-Boost-LB runs up to three times faster than
PRR-Boost. Together with Figure 9, PRR-Boost-LB is in fact
both efficient and effective given randomly selected seeds.

Effectiveness of the compression phase. Table 3 shows
the compression ratio of PRR-Boost, and the memory usage
of both proposed algorithms. Given randomly selected seed
nodes, the compression step of PRR-graphs is also very
effective. Together with Table 2, we can conclude that the
compression phase is an indispensable step for both cases
where the seeds are highly influence users or random users.

Approximation factors in the Sandwich Approximation. The
approximate ratio of PRR-Boost and PRR-Boost-LB depends

on the ratio
µ (B ⇤)

∆ S (B ⇤)
. We use the same method to generate
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Experiments: Approx. Ratio 1 − 1/𝑒 − 𝜖 ⋅
𝜇 𝐵𝑂𝑃𝑇

Δ𝑆 𝐵𝑂𝑃𝑇
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Fig. 7: Effects of the boosting parameter (influential seeds,
k = 1000).
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Fig. 8: Sandwich Approximation with varying boosting

parameter :
µ (B )

∆ S (B )
(influential seeds, k = 1000).

boosted influence probabilities on edges are. Figure 7 shows
the effects of β on the boost of influence and the running time,
when k = 1000. For other values of k, the results are similar.
In Figure 7a, the optimal boost increases when β increases.
When β increases, for Flixster and Flickr, PRR-Boost-LB
returns solution with quality comparable to those returned
by PRR-Boost. For Twitter , we consider the slightly de-
generated performance of PRR-Boost-LB acceptable because
PRR-Boost-LB runs significantly faster. Figure 7b shows
the running time for PRR-Boost and PRR-Boost-LB. When
β increases, the running time of PRR-Boost increases ac-
cordingly, but the running time of PRR-Boost-LB remains
almost unchanged. Therefore, compared with PRR-Boost,
PRR-Boost-LB is more scalable to larger boosted influence
probabilities on edges. In fact, when β increases, a random
PRR-graph tends to include more nodes and edges. The run-
ning time of PRR-Boost increases mainly because the cost for
PRR-graph generation increases. However, when β increases,
we observe that the cost for obtaining “critical nodes” for a
random PRR-graph does not change much, thus the running
time of PRR-Boost-LB remains almost unchanged. Figure 8
shows the approximation ratio of the sandwich approximation
strategy with varying boosting parameters. Weobserve that, for
every dataset, when we increase the boosting parameter, the

ratio of
µ (B )

∆ S (B )
for large∆ S (B ) remains almost the same. This

suggests that both our proposed algorithms remain effective
when we increase the boosted influence probabilities on edges.

B. Random seeds

In this part, we select five sets of 500 random nodes as
seeds for each dataset. The setting here maps to the real
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Fig. 9: Boost of the influence versus k (random seeds).
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Fig. 10: Running time (random seeds).

situation where some users become seeds spontaneously. All
experiments are conducted on five sets of random seeds, and
we report the average results.

Quality of solution. We select up to 5000 nodes and compare
our algorithms with baselines. From Figure 9, we can draw
conclusions similar to those drawn from Figure 4 where the
seeds are highly influential users. Both PRR-Boost and
PRR-Boost-LB outperform all baselines.

Running time. Figure 10 shows the running time of
PRR-Boost and PRR-Boost-LB, and the speedup of
PRR-Boost-LB compared with PRR-Boost. Figure 10b shows
that PRR-Boost-LB runs up to three times faster than
PRR-Boost. Together with Figure 9, PRR-Boost-LB is in fact
both efficient and effective given randomly selected seeds.

Effectiveness of the compression phase. Table 3 shows
the compression ratio of PRR-Boost, and the memory usage
of both proposed algorithms. Given randomly selected seed
nodes, the compression step of PRR-graphs is also very
effective. Together with Table 2, we can conclude that the
compression phase is an indispensable step for both cases
where the seeds are highly influence users or random users.

Approximation factors in the Sandwich Approximation. The
approximate ratio of PRR-Boost and PRR-Boost-LB depends

on the ratio
µ (B ⇤)

∆ S (B ⇤)
. We use the same method to generate
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